
 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 11 Issue 3 March 2024

1

Application of Edge Detection to Image

Classification for Wind Turbine Blade Defects
[1] Zachary Ward, [2] Jeremiah Engel, [3] Mohammad A.S. Masoum, [4] Mohammad Shekaramiz,

 [5] Abdennour Seibi
[1] [2] [3] [4] [5] Engineering Department, Utah Valley University Orem, UT 84058, USA

Corresponding Author Email: [1] Zachary.Ward@uvu.edu, [2] Jeremiah.Engel@uvu.edu, [3] mmasoum@ieee.org,
[4] mshekaramiz@uvu.edu, [5] aseibi@uvu.edu

Abstract— Wind turbines can become damaged during operation, and wind turbine blades are especially susceptible. Machine

learning algorithms are often used to classify images, and these images are commonly processed prior to their use. One of these

preprocessing methods is edge detection, which isolates the areas of an image that contain high-frequency information, such as edges.

This paper explores the effect of applying edge detection as a preprocessing method for machine learning algorithms trained to classify

defects in images of wind turbine blades. Specifically, edge detection is applied to the Xception and VGG19 convolutional neural

networks. Conclusions as to the efficacy of edge detection as a preprocessing method for this type of data are drawn by comparing the

classical performance of the selected machine learning algorithms to the performance of the same algorithms after implementing edge

detection. If found to be successful, this technique can be used to improve automated detection of faulty wind turbines, which has

implications for the reduction of energy and revenue loss at wind farms due to wind turbine downtime.

Index Terms— Deep learning, edge detection, VGG19, wind turbine, Xception.

I. INTRODUCTION

The demand for renewable energy has increased. This is

especially true of renewable energy generated from wind

through wind farms. In the last three years (2020-2022), wind

power has experienced its top three years of growth in history

[1]. This conversion of wind energy to sustainable electricity

is accomplished using wind turbines. Despite the increased

popularity of the energy produced by these machines, wind

turbines are susceptible to damage, especially by the

environment they reside in [2, 3, 4]. The blades of the wind

turbine are no exception. In a survey studying over 1,000

wind turbines across a period of fifteen years, the wind

turbine blades were found to cause over 5% of wind turbine

failures; failures such as these can result in downtimes greater

than ten days [5, 6].

Wind turbine failures and downtime can be prevented by

condition monitoring. Unmanned aerial vehicles and

autonomous drones are a growing area of interest in industry

and academia for addressing this need [7, 8, 9, 10]. Machine

learning has been investigated through algorithms such as

support vector machines (SVMs) and convolutional neural

networks (CNNs) as a successful method to enable these

vehicles to perform condition monitoring without human

intervention [11, 12, 13]. One of the key aspects of condition

monitoring is the identification of cracks and other defects on

a wind turbine's blades. This research aims to evaluate the

efficacy of edge detection, a data preprocessing method, for

wind turbine blade crack detection by comparing the

performance of Xception and VGG19, two common CNN

architectures, implementing this preprocessing stage to the

classical performance of those architectures on a dataset

containing 6,000 images of healthy and faulty wind turbine

blades. If successful, this method will increase the accuracy

of machine learning architectures in detecting defects on

wind turbine blades and thus benefit the field of autonomous

condition monitoring of wind turbines.

 In the remainder of this paper, the methodology guiding

the evaluation process of edge detection is explained in

Section II, the results are presented in Section III, and

conclusions are drawn and recommendations made in Section

IV.

II. METHODOLOGY

Edge detection will be evaluated by training the Xception

and VGG19 CNN architectures on a dataset containing

images of healthy and faulty wind turbine blades. An

overview of this process is provided in Fig. 1. This section

presents an elaboration on the Xception and VGG19 CNN

architectures, the wind turbine dataset, edge detection, and

the procedure used to evaluate edge detection as a data

preprocessing method.

A. Xception

Xception is an implementation of the CNN. CNNs are

neural networks consisting of pooling, fully-connected, and

convolutional layers. Each layer is connected to the layers

directly preceding and following it, and each layer is formed

from weight-storing nodes. These weights are gradually

updated during the model training process and enable the

model to make inferences on new data. Each type of layer

performs specific functionality. The pooling layer reduces

the size of data it receives, and the fully-connected layer

implements a mapping of each input node with all of the

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 11 Issue 3 March 2024

2

nodes on its output. The namesake of the CNN is the

convolutional layer. It performs the convolution operation on

the matrix of 2-dimensional (2D) data it receives. During this

operation, the elementwise (Hadamard) product is computed

between every region of the input data and another 2D matrix

known as the kernel. The summation of all elements of the

resulting matrix constitutes an entry in the convolutional

layer's output feature map. The full feature map is formed as

this operation is repeated for every region of the input matrix

[14].

Fig. 1. Implementation, training, and performance of Xception and VGG19 machine learning algorithms with and without

edge detection preprocessing.

The core idea distinguishing Xception from other CNNs is

the Xception module, which replaces the typical

convolutional layer. This module implements layers

performing depthwise separable convolution, which

separates the computation of spatial and cross-channel

correlations. Xception also includes residual connections

between layers [15]. A visualization of the Xception

architecture as implemented in this paper is shown in Fig. 2.

Fig. 2. Structure of the Xception architecture implemented in

this reserch.

B. VGG19

VGG19 is another implementation of the CNN. The VGG

network is one of the two CNN architectures explored in this

paper, a fundamental yet renowned machine learning

algorithm introduced by Andrew Zisserman and Karen

Simonyan [16]. The VGG model analyzes the depth of layers

using a relatively small convolutional filter size (3 × 3) [17].

The pre-trained Visual Geometry Group model 19 (VGG19)

was trained on the ImageNet database of roughly 14,197,122

images that are categorized according to the WordNet

hierarchy. All images in this dataset are RGB with size 224 ×

224 [18]. The pre-trained model serves as a base for which

wind turbine fault image processing can be added to the

classifier.

The first sixteen layers of VGG19 are convolution layers,

and the last three layers are dense or fully connected layers

[18]. Five blocks of convolution are present in VGG19. Each

block is combined with one MaxPool Layer. Block 1: The

depth of filters is 64 with two convolution layers. Block 2:

The depth of filters is 128 with two convolution layers. Block

3: The depth of filters is 256 with four convolution layers.

Block 4 and Block 5: The depth of filters is 512 with four

convolution layers [19]. The model uses kernels of size (3 × 3)

with a stride size of one pixel, which allows the entire

construct of each image to be covered. Spatial padding is

used to preserve the spatial resolution of the image, and max

pooling is performed over a (2 × 2) pixel window with a

stride of 2. A rectified linear unit (ReLU) layer introduces

non-linearity after those mentioned previously. This allows

the model to classify more effectively, and it improves

computational and running time. Three fully connected

layers are used at the end: the first two are of size 4096; the

third contains 1000 channels. Finally, a softmax function

layer completes the architecture. The architecture of the

model is summarized in detail in Table I [20].

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 11 Issue 3 March 2024

3

Table I. Vgg19 Layers Architecture.

Layer # Layer Details Layer # Layer Details

1 Conv3x3 (64) 11 Conv3x3 (512)

2 Conv3x3 (64) 12 Conv3x3 (512)

- MaxPool - MaxPool

3 Conv3x3 (128) 13 Conv3x3 (512)

4 Conv3x3 (128) 14 Conv3x3 (512)

- MaxPool 15 Conv3x3 (512)

5 Conv3x3 (256) 16 Conv3x3 (512)

6 Conv3x3 (256) - MaxPool

7 Conv3x3 (256) 17 Fully Connected

(4096)

8 Conv3x3 (256) 18 Fully Connected

(4096)

- MaxPool 19 Fully Connected

(1000)

9 Conv3x3 (512) - SoftMax

10 Conv3x3 (512) - -

C. Dataset

In order to train the Xception and VGG19 CNNs on wind

turbine defect classification and to evaluate the impact of

edge detection as a data preprocessing method, a dataset of

healthy and faulty wind turbine blades was created. In both

categories, the subject of the image is a small-scale wind

turbine prototype assembled at Utah Valley University

(UVU). In total, the dataset contains 6,000 red-green-blue

(RGB) images, of which 3,000 belong to the healthy class,

and the other 3,000 belong to the faulty class. Wind turbine

blades in the faulty class of images are distinguished from

those in the healthy class by artificially generated defects

including cracks, erosion, and holes. Additionally, both

classes contain images captured outside using a Zenmuse L1

RGB camera connected to a DJI Matrice 300 RTK drone

where the blades are mounted on the wind turbine prototype.

Images are also included in the dataset that were captured

inside with the blades isolated from the wind turbine

prototype.

For training and evaluation, each image in the dataset was

downscaled to a size of 300 × 300. This had the effect of

decreasing the training time of the CNN models without

impacting the performance comparison between the standard

models and the models modified with the edge detection

preprocessing technique. Furthermore, the dataset was

divided into training, testing, and validation subsets: 4,200

images were allocated for the training subset, 1,200 for the

testing subset, and 600 for the validation dataset. This

allowed the evaluation of edge detection to proceed using

fresh data previously unseen by the models. This process will

be described in detail in Section II-E.

A sample of the wind turbine dataset is provided in Fig. 3

Particularly, Fig. 3(a) contains images from the healthy class

of wind turbine blades, and Fig. 3(b) contains images from

the faulty class. The two leftmost images in each category are

taken from the subset of images captured outside; the

rightmost images are from the subset captured inside.

D. Edge Detection

Edge detection is a class of algorithms that approximate

the magnitude of an image's gradient. As a result, these

algorithms output a 2D matrix where each element is a value

between 0 and 1 and corresponds to the rate of change of the

pixel intensity in the original image at that point. Values

closer to 0 in the output matrix indicate a location in the

original image with slowly changing features while values

closer to 1 indicate a location with features changing more

quickly. This means that edges in the original image, which

are locations that experience sudden changes in pixel

intensity, have higher values in the output matrix; the other,

non-edge pixels have lower values.

Many algorithms exist for edge detection calculation: this

research implements the Roberts cross operator through the

scikit-image Python library for its computational simplicity.

In this algorithm, the original image is convolved with two

kernels: the positive diagonal kernel given in (1) and the

negative diagonal kernel given in (2). Afterwards, the

resulting matrices are combined to form the final output

matrix using (3), where Ep is the matrix resulting from the

convolution of the original image with (1), En is the matrix

resulting from the convolution of the original image with (2),

and E is the matrix output from the edge detection algorithm

[21].

This algorithm requires a 2D matrix; however, the wind

turbine dataset was captured in RGB format. This requires a

3D matrix, as the extra dimension is used to store information

from the red, green, and blue data channels. To convert the

dataset to a usable form, the dataset images were processed

using (4) prior to entering the edge detection algorithm. In

this equation, R is the 2D matrix of red-channel data from the

original image, G is the green-channel data, B is the

blue-channel data, and S is the 2D output matrix representing

the converted grayscale image [21]. The resulting grayscale

image consists of pixels that have an intensity that is

equivalent to the intensity of the pixels in the original image.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 11 Issue 3 March 2024

4

For the purposes of evaluation, a copy of the captured wind

turbine dataset was processed using edge detection, and

training and evaluation occurred on this new, static dataset.

Fig. 3(c) and Fig. 3(d) sample images from the respective

Healthy and Faulty image classes from the edge detection

dataset. In a real-time wind turbine condition monitoring

system, this edge detection algorithm could be added to the

beginning of a CNN architecture as a new layer to perform

edge detection preprocessing dynamically on every image

that enters the model for classification.

E. Evaluation Procedure

To evaluate edge detection preprocessing for use in wind

turbine health classification by CNNs, parameters within the

network, known as hyperparameters, were first identified that

could be tuned to increase the performance of each CNN.

These included each respective CNN's batch size, loss

function, optimizer type, activation function, and dropout

ratio. The batch size represents the amount of data that is

allowed to pass through the CNN during training before the

model's weights are updated. Smaller batch sizes suffer from

noise due to the model’s weights being frequently updated;

this noise can cause a CNN not to converge on optimal

weights during training. In larger batch sizes, the effects of

noise are minimized, but the model is more likely to be

trapped with non-optimal weights.

The loss function computes the error margin between the

model's output and the correct output during training. The

optimizer is used to update the model weights during training

to increase the model's accuracy by traversing the gradients

output by the loss function. The activation function imposes

non-linear behavior on the values passed between the layers

of the architecture. The dropout ratio is used to prevent the

CNN from overfitting during training. It is a measure of the

percentage of nodes in the architecture that are deactivated

during training, which forces the CNN to continuing

identifying new patterns as it is trained. For all of these

hyperparameters, proper values must be found that balance

the trade-offs for each hyperparameter on the specific dataset

used for training. This occurs during hyperparameter tuning.

In this research, the KerasTuner software was used to identify

and tune these hyperparameters [22].

After tuning the hyperparameters, the optimal values

found are fixed for use during the training of the CNN model.

This is where the model weights are updated and the CNN

learns the relationships of the training data to enable

successful inference on future, unseen data. The training was

accomplished using the Keras software, which was also used

to programmatically define the Xception and VGG19

architecture [23].

Fig. 3. Selected images from the wind turbine dataset (6,000

images) captured at Utah Valley University (UVU) using a

small-scale wind turbine prototype. Samples are shown for

both the original RGB dataset and the corresponding images

modified by edge detection preprocessing.

To enhance the training and evaluation process, the wind

turbine dataset was subdivided into three separate datasets:

one used for training, one for testing, and one for validation.

The training subset was used exclusively during model

training, and the testing dataset was used to periodically

evaluate progress during training on fresh data. The

validation subset was used only for final evaluation after the

training process was completed. This ensures the results are

only based on inferences: they aren't biased with data already

learned during training.

To evaluate the results, each network architecture was

independently trained ten times using the hyperparameters

identified during hyperparameter tuning. This allowed the

average performance to be calculated, which more accurately

represents the performance obtainable if these architectures

were to be trained and implemented for an autonomous wind

turbine condition monitoring system. After each independent

training session, a confusion matrix was generated. This

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 11 Issue 3 March 2024

5

represents results in terms of true positive, true negative, false

positive, and false negative. True positive inferences are

where the model correctly classified an image as, in this case,

a healthy blade. True negative inferences are where the

model correctly classified an image as containing a faulty

blade. A false positive inference means the model incorrectly

classified a faulty blade as healthy, and a false negative

means a healthy blade was incorrectly classified as faulty.

A variety of statistics can be derived from a confusion

matrix. This research focuses on accuracy, precision, hit rate,

miss rate, specificity, fall-out, and F1 score. Accuracy

represents the ratio of correct inferences to the total number

of inferences. Precision is the ratio of correct healthy

inferences to the total number of healthy inferences while hit

rate is the ratio of correct healthy inferences to the total

number of healthy images. On the other hand, the miss-rate is

the ratio of incorrect faulty inferences to the total number of

healthy images. Additionally, specificity is the ratio of

correct faulty inferences to the total number of faulty images,

and fall-out is the ratio of incorrect healthy inferences to the

total number of faulty images. F1 score is the harmonic mean

of precision and hit rate. This means ideal models possess

larger values of accuracy, precision, hit rate, specificity, and

F1 score and lower values of miss rate and fall-out. All values

are real numbers and range from 0 to 1. For each of the ten

independent training sessions, these statistics were derived

from the corresponding confusion matrix. The final statistics

used for evaluation are the averages of these statistics from

each of the ten training sessions.

The process of tuning hyperparameters, training the model,

and deriving average results was repeated for each dataset –

the original RGB dataset, the dataset processed with edge

detection, and the portion of the edge detection dataset

containing only images captured outdoors – and for each

CNN architecture – Xception and VGG19. Results are

presented in Section III.

III. RESULTS

Edge detection for wind turbine defect classification was

evaluated through the average accuracy obtained by each

selected CNN architecture when implementing edge

detection preprocessing in comparison with the obtained

average accuracy on the original RGB dataset unprocessed

with edge detection. The average accuracies for the selected

CNN architectures on the original RGB dataset are presented

in Table II. The average accuracies obtained when edge

detection preprocessing was implemented are given in Table

III. Both tables are sorted by highest accuracy and include the

average statistics described in Section II-E for reference.

When edge detection was applied to the portion of dataset

images captured indoors, it became evident that glare from

the indoor lighting was problematic. After edge detection has

been applied, cracks are virtually indistinguishable from

lighting reflections. This is evident in the right-most image of

Fig. 3(d) where glare is present on the upper portion of the

blade and cracks exist on the lower portion of the blade. To

obtain an accurate estimate of edge detection's performance,

it was also evaluated on a subset of the original dataset: the

portion exclusively containing images captured outdoors.

This removes the long, narrow reflections caused by indoor

lighting that full-scale wind turbines would not possess.

These results are presented in Table IV.

Table II. Average Wind Turbine Blade Defect

Classification Performance Without Edge Detection

Preprocessing Using Xception And Vgg19.

Algorithm VGG19 Xception

Accuracy 0.9867 0.9792

Precision 0.9733 0.9709

Hit Rate 1.0000 0.9880

Miss Rate 0.0000 0.0120

Specificity 0.9740 0.9703

Fall-Out 0.0260 0.0297

F1 Score 0.9865 0.9794

Table III. Average Wind Turbine Blade Defect

Classification Performance With Edge Detection

Preprocessing Using Xception And Vgg19.

Algorithm VGG19 Xception

Accuracy 0.9300 0.9345

Precision 0.8800 0.9477

Hit Rate 0.9778 0.9200

Miss Rate 0.0222 0.0800

Specificity 0.8909 0.9490

Fall-Out 0.1090 0.0510

F1 Score 0.9263 0.9335

Table IV. Average Wind Turbine Blade Defect

Classification Performance With Edge Detection

Preprocessing On Images Captured Exclusively Outdoors.

Algorithm VGG19 Xception

Accuracy 0.8800 0.9575

Precision 0.7800 0.9767

Hit Rate 0.9750 0.9380

Miss Rate 0.0250 0.0620

Specificity 0.8167 0.9770

Fall-Out 0.1833 0.0230

F1 Score 0.8667 0.9565

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 11 Issue 3 March 2024

6

A visualization of the confusion matrices is also provided.

These are the confusion matrices generated during the ten

independent training sessions that possessed the highest

accuracies `for each CNN architecture. Specifically, the top

confusion matrices from the original RGB dataset are given

in Fig 4, and the top confusion matrices from the dataset

processed with edge detection are given in Fig. 5. The top

confusion matrices from the exclusively outdoors portion of

the edge detection dataset are provided in Fig 6.

Fig. 4. Highest accuracy confusion matrices for wind turbine

blade defect classification without edge detection

preprocessing using Xception and VGG19.

Fig. 5. Highest accuracy confusion matrices for wind turbine

blade defect classification with edge detection preprocessing

using Xception and VGG19.

Fig. 6. Highest accuracy confusion matrices for wind turbine

blade defect classification with edge detection preprocessing

on images captured exclusively outdoors using Xception and

VGG19.

IV. CONCLUSIONS

Edge detection preprocessing failed to improve the

performance of wind turbine defect classification using

convolutional neural networks (CNNs). In fact, it drastically

decreased the performance. On the original RGB dataset,

both CNN architectures performed in excess of 97%

accuracy – VGG19 had the highest accuracy at 98.67% and

Xception had slightly lower accuracy at 97.92%. When the

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 11 Issue 3 March 2024

7

edge detection preprocessing algorithm was introduced, the

accuracy for both architectures fell below 94%: Xception

performed at 93.45% and VGG19 performed at 93.00%. This

decrease in performance is also visible across the other

averaged statistics.

In the portion of the wind turbine dataset processed with

edge detection that exclusively contained images captured

outdoors, which was intended to mitigate unnatural glare

from indoor lighting interfering with the edge detection

algorithm, a similar trend is visible. The Xception

architecture, for instance, obtained an average accuracy of

95.75%. This is higher than the accuracy obtained on the

edge detection dataset containing both indoor and outdoor

images, which indicates the removal of the indoor glare did

benefit the edge detection algorithm. However, this accuracy

was still lower than the accuracy obtained on the original

RGB dataset. The performance of the VGG19 architecture

experienced a further decrease in performance: it obtained an

average accuracy of 88.00%. The architecture being unable

to converge on optimal weights due to the reduced size of the

dataset resulting from the removal of images captured

indoors is the likely cause of this decrease.

In summary, this research evaluated the efficacy of using

edge detection implemented through the Roberts cross

operator to increase the performance of an autonomous wind

turbine condition monitoring system. To meet this goal, a

dataset of 6,000 RGB images containing healthy and faulty

wind turbine blades was created, to which edge detection

preprocessing was applied. Two common CNN architectures,

Xception and VGG19, were trained on both the original RGB

dataset and the dataset processed with edge detection to

compare their respective performance in each scenario. The

performance of each architecture decreased when edge

detection was introduced. These results indicate that edge

detection implemented through the Roberts cross operator is

not suitable for increasing the performance of an autonomous,

CNN-based wind turbine condition monitoring system.

ACKNOWLEDGMENTS

This work is supported by the Office of the Commissioner

of Utah System of Higher Education (USHE)-Deep

Technology Initiative Grant 20210016UT.

REFERENCES

[1] M. Hutchinson and F. Zhao. GWEC — Global Wind Report

2023. Mar. 2023.

[2] H. Long et al. “Data-Driven Wind Turbine Power Generation

Performance Monitoring”. In: IEEE Transactions on

Industrial Electronics 62.10 (2015), pp. 6627–6635. DOI:

10.1109/TIE.2015.2447508.

[3] J. Ribrant and L.M. Bertling. “Survey of Failures in Wind

Power Systems With Focus on Swedish Wind Power Plants

During 1997–2005”. In: IEEE Transactions on Energy

Conversion 22.1 (2007), pp. 167–173. DOI: 10.1109/TEC.

2006.889614.

[4] N. Honjo. “Detail survey of wind turbine generator and

electric facility damages by winter lightning”. In: The 31st

Wind Energy Utilization Symposium. Vol. 35. 2013, pp. 296–

299.

[5] B. Hahn, M. Durstewitz, and K. Rohrig. “Reliability of wind

turbines”. In: Wind energy. 2007, pp. 329–332.

[6] W. Qiao and D. Lu. “A Survey on Wind Turbine Condition

Monitoring and Fault Diagnosis—Part I: Components and

Subsystems”. In: IEEE Transactions on Industrial Electronics

62.10 (2015), pp. 6536–6545. DOI: 10.1109/TIE.2015.2422

112.

[7] B. Coffey. Taking Off: Nevada Drone Testing Brings

Commercial UAVs Closer To Reality. https://www.ge.com/

news/reports/taking-off-nevada-drone-testing-brings-commer

cial-uavs-closer-to-reality. 2019.

[8] GEV Wind Power. Wind Turbine Blade Inspection.

https://www.gevwindpower.com/blade-inspection/. 2021.

[9] B. Pinney et al. “Exploration and Object Detection via

Low-Cost Autonomous Drone”. In: 2023 Intermountain

Engineering, Technology and Computing (IETC). 2023, pp.

49–54. DOI: 10.1109/IETC57902.2023.10152139.

[10] B. Pinney et al. “Drone Path Planning and Object Detection

via QR Codes; A Surrogate Case Study for Wind Turbine

Inspection”. In: 2022 Intermountain Engineering, Technology

and Computing (IETC). 2022, pp. 1–6. DOI: 10.1109/

IETC54973.2022.9796739.

[11] J. Miller et al. “Hyperparameter Tuning of Support Vector

Machines for Wind Turbine Detection Using Drones”. In:

2023 Intermountain Engineering, Technology and Computing

(IETC). 2023, pp. 55–60. DOI: 10.1109/IETC57902.2023.

10152252.

[12] C. Seibi et al. “Locating and Extracting Wind Turbine Blade

Cracks Using Haar-like Features and Clustering”. In: 2022

Intermountain Engineering, Technology and Computing

(IETC). 2022, pp. 1–5. DOI: 10.1109/IETC54973.2022.

9796823.

[13] L. N’Diaye et al. “Residual and Wavelet based Neural

Network for the Fault Detection of Wind Turbine Blades”. In:

2022 Intermountain Engineering, Technology and Computing

(IETC). 2022, pp. 1–5. DOI: 10 .1109/IETC54973.2022.

9796852.

[14] K. O’Shea and R. Nash. An Introduction to Convolutional

Neural Networks. 2015. DOI: 10.48550/ARXIV.1511.08458.

URL: https://arxiv.org/abs/1511.08458.

[15] F. Chollet. “Xception: Deep Learning with Depthwise

Separable Convolutions”. In: 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). 2017, pp.

1800–1807. DOI: 10.1109/CVPR.2017.195.

[16] K. Simonyan and A. Zisserman. “Very Deep Convolutional

Networks for Large-scale Image Recognition”. In: 2015

International Conference on Learning Representations (ICLR).

2014. DOI: arXivpreprintarXiv:1409.1556820.

[17] D. Sarkar. “A comprehensive hands-on guide to transfer

learning with real-world applications in deep learning”. In:

Towards Data Science (2018).

[18] O.G. Yalcin. “4 Pre-Trained CNN Models to Use for

Computer Vision with Transfer Learning”. In: Towards Data

Science (2020).

[19] F. Chollet. Deep learning with Python. Simon and Schuster,

2021.

[20] A. Kaushik. Understanding the VGG19 architecture. https://iq.

opengenus.org/vgg19-architecture/. 2020.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 11 Issue 3 March 2024

8

[21] S. van der Walt et al. “scikit-image: image processing in

Python”. In: PeerJ 2 (June 2014), e453. ISSN: 2167-8359.

DOI: 10.7717/peerj.453. URL: https://doi.org/10.7717/peerj.

453.

[22] T. O’Malley et al. KerasTuner. https://github.com/keras-team/

keras-tuner. 2019.

[23] F. Chollet et al. Keras. https://keras.io. 2015.

